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MECHANICAL ENGINEERING DEPARTMENT 
UNITED STATES NAVAL ACADEMY 

 
EM423 - INTRODUCTION TO MECHANICAL VIBRATIONS 

 
CONTINUOUS SYSTEMS - FLEXURAL VIBRATION OF BEAMS 

PART 1: WAVE SOLUTION 
 
SYMBOLS 
ρ Mass density 
Ax Cross sectional area 
M Bending moment 
V Internal shear force 
I Second moment of area 
x Distance along the beam 
k Wave number 
 
INTRODUCTION 
This theory is applicable to the flexural vibration of slender beams. The theory is directly 
applicable to many engineering structures. The solution to beam vibrations can be 
derived in two different forms; as a classical solution of equations, or as a wave 
equation. Part 1 of these notes (this handout) derives the wave solution. The solution 
using the classical approach is in Part 2. 
 
ASSUMPTIONS 
1. The beam is thin compared to its length. 
 
2. The beam is uniform, homogeneous and isotropic. 
 
3. The material is within the elastic limit, and obeys Hooke's Law. 
 
4. Plane sections remain plane. 
 
THEORY PART 1 - THE WAVE SOLUTION 
Consider a small element of beam: 
 

M
V

V
x

x
M+       dx

V+       dx
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We will consider the “strengths” equations, and two “dynamics” equations, and use 
these three equations to eliminate the internal shear force and bending moment. 
 
Resolve forces vertically (f = ma) 
 

( )
2

2x
V d y

V x V A x
x dt

δ ρ δ
∂ + − = ∂ 

 

hence 
2

2x
V d y

A
x dt

ρ
∂

=
∂

 

 
The bending moment equation from Strength of Materials is: 
 

2

2

y
M EI

x
∂

= −
∂

 

 
For the element, take moments about the right face and equate Iα: Note we assume 
that the Iα term is small, which is normally valid if we do not have a deep-section beam. 
 

0
M

M x M V x
x

M
V

x

δ δ
∂ + − − = ∂ 

∂
=

∂

 

Combining these equations yields the equation of motion: 
 

4 2

4 2 0x
y d y

EI A
x dt

ρ
∂

+ =
∂

 

 
Remember, this equation assumes the beam is uniform along its length. 
 
We now restrict the motion to be harmonic with respect to time, and separate the 
variables. This is a 4th order equation, and the general solution could include functions 
such as sine and cosine, as well as the hyperbolic functions sinh and cosh. More 
generally, for the wave solution discussed in this handout, we use the complex 
exponential form, which can be combined to produce the sin, cos, sinh, and cosh 
functions if necessary.
 

( ) ( ), i ty x t Y x e ω=  
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Substitute this solution into the equation of motion to get: 
 
 

4 2

4

1/ 44 2
4

4

0

or        0     with      wave number

x

x

Y A
Y

EIx

Y A
k Y k

EIx

ρ ω

ρ ω

 ∂
− = ∂  

 ∂
− = = = ∂  

 

 
Substituting . sxY A e= yields ( )4 4 0s k Y− =  from which: 

  iks k= ± ±  
 
and the general solution for flexural motion of the beam becomes: 
 

( ) ( )1 2 3 4, . . . .kx kx ikx ikx i ty x t A e A e A e A e e ω− −= + + +  

 
The 3rd term.  Let us inspect this result one term at a time, starting with the 3rd term. 
 

( )
3.

i t kxA e ω +  
Remembering Euler's equations: 

( ) ( )
( ) ( )

cosh sinh

cos .sin

kx

ikx

e kx kx

e kx i kx

±

±

= ±

= ±
 

 
We can see that the 3rd term of the general solution, A3 ei(ωt+kx), is harmonic with respect 
to both time and position along the beam. As time increases, we can only keep the 
value of the term constant if we decrease x. This means the term represents a wave 
traveling in the negative x direction. 
 
The wave number is k, from which we can calculate the speed of the flexural waves, af 
 

2.      hence     f f f
x

EI
a f a

k A
ω

λ ω
ρ

= = =  

 
Unlike strings, rods and shafts, the wave velocity depends on its frequency. Waves with 
this property are called DISPERSIVE. 
 
As the wave travels down the beam, the beam has associated kinetic and potential 
(spring-like) energies. These energies are: 
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( )

( )

2 2 2
3

2 2 2
3

1
KE/unit length sin

2
1

PE/unit length cos
2

X

X

A A t kx

A A t kx

ρ ω ω θ

ρ ω ω θ

= − +

= − +
 

 
The total energy is a constant.  
 

22
3

1
Total energy per unit length = KE+ PE

2 XA Aρ ω=  

 
The power flow associated with this wave can be calculated as: 
 

22
3

3
2

3

energy
Power flow speed

unit length
1
2
1
2

X f

X

A A a

A A
k

ρ ω

ω
ρ

= ×

=

=

 

 
The 4th Term.  The 4th term in the solution is: 

( )
4.

i t kxA e ω −  
 
This is similar to the 3rd term, and represents a wave traveling in the positive x 
direction. It is harmonic with respect to both time and position, and has the same speed 
as the 3rd term wave. 
 
The 2nd term.  Now let us inspect the 2nd term. 
 

2.
kx i tA e e ω−  

 
The constants A1, A2, A3 and A4 may themselves be complex. As an alternative way of 
inspecting the second term, let us make the substitution: 
 

2
2 2

iA A e φ=  
which makes the second term 

( )2
2

i tkxA e e ω φ+−  
 

The (negative) real exponent shows the motion is NOT HARMONIC WITH RESPECT 
TO POSITION along the beam. In other words, for a given instant in time, the entire 
wave has the same sign. The motion is in phase for all x, and the negative exponential 
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term shows the motion decays in the positive x-direction. Waves with this property are 
called non propagating waves. 
 
The complex exponential term shows the motion is harmonic with respect to time, as we 
expect from our initial assumptions. 
 
The 1st term.  The 1st term is similar to the 2nd term, but the wave decays in the 
negative x-direction. 
 
 
NON PROPAGATING WAVES decay with distance from the point where they are 
generated. Hence they cannot be seen at large distances from where they are 
generated. Because of this, they are also sometimes called near field waves. 
 
PROPAGATING WAVES have a constant amplitude (ignoring any energy loss), and 
travel a long way through the structure. They are also called far field waves. 
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DISCUSSION 
1. Harmonic flexural vibration of a beam includes 4 waves. 
 
2. There is one far field wave traveling in the positive x-direction, and one in the 
negative x-direction. 
 
 

 
 
3. There is one near field wave traveling in the positive x-direction, and one in the 
negative x-direction. 
 

 
 
4. Far field waves travel throughout a structure. Near field waves decay rapidly with 
distance from their point of generation. 
 
5. Far field waves can transmit energy. Near field waves hold energy, but they 
cannot transmit it through a structure. 
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EXAMPLE  What is the wave motion generated by a point harmonic force in an infinitely 
long beam? 
 

 

( ) ( )1 3 2 4. .             . .kx ikx i t kx ikx i ty A e A e e y A e A e eω ω− + + + − −= + = +  

The boundary conditions for this problem are defined at x = 0 (the point of application of 
the force). 
 
At x = 0 
Displacement continuity:  y y− +=  hence 
 

1 3 2 4A A A A+ = +  

Slope continuity:   
y y
x x

− +∂ ∂
=

∂ ∂
 hence 

1 3 2 4. .A i A A i A+ = − −  
 

Moment balance:  
2 2

2 2

y y
EI

x x

− +∂ ∂
− =

∂ ∂
 hence 

1 3 2 4A A A A− = −  
 

Force balance:  
3 3

3 3. i t y y
F e EI

x x
ω

+ − ∂ ∂
= − ∂ ∂ 

 hence 

1 3 2 43 . .
F

A i A A i A
EIk
−

= − + −  

 
Simultaneous solution of these 4 equations yields: 
 

1 2 3 43 3

.
     and     

4 4
F i F

A A A A
EIk EIk
− −

= = = =  

 
From which: 

( ) ( )3 3.      and     .
4 4

kx ikx i t kx ikx i tF F
y e i e e y e i e e

EIk EIk
ω ω+ − − −− −

= + = +  
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EFFECT OF A FREE BOUNDARY 
We wish to investigate what happens when a far field wave is traveling in a semi-infinite 
beam, and it hits the end of the beam. The input wave, with amplitude AO, is the only 
wave traveling in the positive x-direction. When it hits the boundary, it will be reflected. 
There is the possibility of two waves being generated at the boundary; one far field, AR, 
and one near field, ANR. Pictorially, the wave situation is: 
 

 
The total motion is a combination of the incident and reflected waves, and therefore only 
the relevant terms are included in the solution.   
 
The origin for x (x = 0) is conveniently placed at the boundary (right end), with x being 
positive to the right. In this case the total wave motion is: 
 

( ) ( )i t kx i t kx i t kx
O R NRy A e A e A e eω ω ω− += + +  

 
We solve this equation for the boundary conditions. For a free end the boundary 
conditions are zero bending moment and zero shear force. 
 

2
2 2 2

2

3
3 3 3

3

0     hence     0

0     hence     . . 0

O R NR

O R NR

y
EI k A k A k A

x
y

EI i k A i k A k A
x

∂
= − − + =

∂
∂

= − + =
∂

 

 
 
Solving these two equations yields: 
 

( ).      and     1R O NR OA i A A i A= − = −  
 

The effect of the boundary is to introduce a -π/2 phase change to the far field wave. In 
addition, a near field wave is generated. 
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EFFECT OF A PINNED BOUNDARY 
We now investigate the effect on the far field wave if the boundary is a pin joint. As with 
the previous example, there is the only wave traveling in the positive x direction, and 
there is the possibility of two waves being generated at the boundary; one far field and 
one near field. Pictorially, the wave situation is: 
 

 
Again, only the relevant terms are included in the solution to give the total motion. As 
before, the origin for x is placed at the boundary, so: 
 

( ) ( )i t kx i t kx i t kx
O R NRy A e A e A e eω ω ω− += + +  

 
The boundary conditions for a pin joint are zero displacement and zero bending 
moment, so solving the general solution at x = 0 yields: 
 

2
2 2 2

2

0     hence     0

0     hence     - 0

O R NR

O R NR

y A A A

y
EI k A k A k A

x

= + + =

∂
− = − + =

∂

 

 
Solving these two equations yields: 
 

     and     0R O NRA A A= − =  
 
The effect of the boundary is to introduce a 180o phase change to the far field wave, but 
no near field wave is generated. 
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EFFECTS OF DISCONTINUITIES 
A discontinuity is anything that affects the progress of waves down a beam. Examples 
of discontinuities are: 
 

A change in the geometry of the beam (e.g. thickness or shape) that changes the 
second moment of area. 

 
A change in material or material property (e.g. steel to aluminum). 

 
A physical support, such as the frames in a ship or airplane structure. 

 
This handout uses the example of a pin joint to show how to calculate the resulting 
wave motion. A far field wave travels up to the discontinuity. Some of the wave may 
reflect, some may be transmitted, and near field waves may be generated. The resulting 
wave motion is therefore: 
 

 
In the same way as we used superposition to look at the wave motion in the semi-
infinite beams, we use superposition to look separately at the motion on each side of 
the discontinuity: 

( )
( )

ikx kx i t
T NT

ikx ikx kx i t
O R NR

y A e A e e

y A e A e A e e

ω

ω

+ − −

− −

= +

= + +
 

There are four unknowns, so we require four boundary conditions. For the pin joint 
these are displacement and slope continuity and a moment balance. 
 

2 2

2 2

at 0 0 0
0 0

. . .

T NT

O R NR

T NT O R NR

T NT O R NR

x y hence A A
y hence A A A

y y
hence i A A i A i A A

x x

y y
hence A A A A A

x x

+

−

+ −

+ −

= = + =
= + + =

   ∂ ∂
= − − = − + +   ∂ ∂   

   ∂ ∂
= − + = − − +   

∂ ∂   
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Solution of these four simultaneous equations yields: 
 

( ) ( )

( ) ( )

1 1

2 2
1 1

2 2

O O
R T

O O
NR NT

A i A i
A A

A i A i
A A

− + −
= =

− − − −
= =

 

 
These results show that the amplitude of the reflected and transmitted waves is the 
same, with a -135o/-45o phase shift respectively. 
 
TRANSMISSION AND REFLECTION COEFFICIENTS 
The far field waves not only cause motion, but also allow energy to flow through the 
structure (Recall that the near field waves hold energy, but cannot transfer energy).  
The power flowing in a far-field wave is given by: 
 

3
2

3
1

Power flow
2 XA A

k
ω

ρ=  

 
When the discontinuity does not change the beam’s mass per unit length, ρAX, or wave 
number, the power flow is proportional to (amplitude)2, and we can define a reflection 
coefficient and a transmission coefficient. 
 

( )
( )

( )
( )

2

2

2

2

reflected wave energy
Reflection coefficient 

incident wave energy

transmitted wave energy
Transmission coefficient 

incident wave energy

R
R

O

T
T

O

A

A

A

A

α

α

= = =

= = =

 

For the pin joint discontinuity, these coefficients are both 0.5. If there is no energy loss 
at the discontinuity (as assumed in these notes), then 
 

1R Tα α+ =  
 
If the beam’s geometry or material change, we need to use the full power flow equations 
in the reflection and transmission coefficient equations. 
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SUMMARY OF COMMON BOUNDARY CONDITIONS 
 

 DISPLACEMENT SLOPE BENDING 
MOMENT 

SHEAR 
FORCE 

 
 
y 
 

y
EI

x
∂
∂

 
2

2

y
EI

x
∂
∂

 
3

3

y
EI

x
∂
∂

 

FIXED zero zero   

FREE   zero zero 

PINNED zero  zero  

SLIDER  zero  zero 

 
 
 
 
 
ASSIGNMENTS 
 
1. Find the resulting wave motion when a far field wave of amplitude AO traveling in 
a beam reflects at a fixed boundary. 
 
2. An infinitely long beam has, at x = 0, a pin joint. Find the resulting wave motion 
when a far field wave of amplitude AO traveling in the beam hits the discontinuity. 
 
3. How is the wave motion for the previous example changed if the discontinuity is a 
slider? 
 
4. In the previous two problems, what proportion of the incident wave energy is 
transmitted along the beam? 
 
5. (Extra credit) A beam of constant cross sectional shape and area is made of 
steel at the left end, and brass at the right end. What proportion of the incident wave 
energy is transmitted along the beam when a far field wave in the steel meets the 
material discontinuity, and what proportion is reflected? 
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SOLUTIONS 
 

1. Find the resulting wave motion when a far field wave of amplitude AO traveling in 
a beam reflects at a fixed boundary. 
 

( ) ( )
( )

, ikx ikx kx i t
O R NR

ikx ikx kx i t
O R NR

y x t A e A e A e e

y
ikA e ikA e kA e e

x

ω

ω

−

−

= + +

∂
= − + +

∂

 

Boundary conditions at x = 0 
 

O

O

0   so  A 0

0   so  -iA 0

R NR

R NR

y A A
y

iA A
x

= + + =
∂

= + + =
∂

 

Solve simultaneously to get: 
( )     and     1R O NR OA iA A i A= − = − −  

 
2. An infinitely long beam has, at x = 0, a pin joint. Find the resulting wave motion 
when a far field wave of amplitude AO traveling in the beam hits the discontinuity. 

 

( ) ( ) ( ) ( ),           ,ikx ikx kx i t ikx kx i t
O R NR T NTy x t A e A e A e e y x t A e A e eω ω− − + − −= + + = +  

Boundary conditions at x = 0 

T

2 2

2 2

0   so  A 0
0   so  0

  so  

  so  

NT

O R NR

O R NR T NT

O R NR T NT

y A
y A A A

y y
iA iA A iA A

x x

y y
A A A A A

x x

+

−

− +

− +

= + =
= + + =

   ∂ ∂
= − + + = − +   ∂ ∂   

   ∂ ∂
= − − + = − +   ∂ ∂   

 

 
Solve simultaneously to get: 

( ) ( )

( ) ( )

1 1

1 1

O O
R T

O O
NR NT

A iA
A A

i i

iA iA
A A

i i

− −
= =

− −

−
= =

− −
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3. How is the wave motion for the previous example changed if the discontinuity is a 
slider? 

 
Boundary conditions at x = 0 

T

3 3

3 3

  so  =A

0   so  0

0   so  0

  so  

O R NR NT

O R NR

T NT

O R NR T NT

y y A A A A

y
iA iA A

x

y
iA A

x

y y
iA iA A iA A

x x

− +

−

+

− +

= + + +

 ∂
= − + + = ∂ 

 ∂
= − + = ∂ 

   ∂ ∂
= − + = +   ∂ ∂   

 

Solve simultaneously to get: 
( ) ( )1 1

2 2
? ?

O O
R T

NR NT

A i A i
A A

A A

− +
= =

= =
 

 
4. In the previous two problems, what proportion of the incident wave energy is 
transmitted along the beam? 
 

(Transmitted Energy) ∝ (Amplitude)2 

For both cases 
2

2 0.5T

O

A
A

= , so 50% of the incident energy is transmitted, and 50% is 

reflected. 
 
 
5. (Extra credit) A beam of constant cross sectional shape and area is made of 
steel at the left end, and brass at the right end. What proportion of the incident wave 
energy is transmitted along the beam when a far field wave in the steel meets the 
material discontinuity, and what proportion is reflected? 
 

The solution to extra credit problems is available from your instructor. 


